
1

 Sisoft Technologies Pvt Ltd

SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

www.sisoft.in

http://www.sisoft.in/

 Polymorphism means having multiple forms of one thing. It can be
done in two types:

1) At Compile Time

2) At Run Time

In Compile time it can be done it two ways:

1) Function Overloading

2) Operator Overloading

In Run rime it can be done with the help of virtual functions.

2 www.sisoft.in

Compile Time Polymorphism:

 When the selection of appropriate function or
operator at Compile Time , is called Early Binding
or Static Binding or static linking. Also known as
Compile Time Polymorphism.

Run Time Polymorphism:

 When the selection of appropriate function or operator at Run
Time , is called Late Binding or Dynamic Binding. Also known as
Run Time Polymorphism.

www.sisoft.in 3

Function Overloading in C++

www.sisoft.in 4

 If any class having multiple functions with the same name but different
parameters then they are said to be function overloading.

 In inheritance, polymorphism is done, by method overriding, when both
super and sub class have member function with same declaration but
different definition.

 There are two ways to overload a function:

1) By changing number of arguments.

2) By having different types of arguments.

5 www.sisoft.in

By changing number of arguments
Class A

{

public:

int sum(int x, int y)

{

cout<<x + y<<endl;

}

int sum(int x)

{

cout<<x<<endl;

}

}

int sum(int x, int y, int z)

{

cout<<x + y + z<<endl;

}

};

void main()

 {

A b;

b.sum(3,4);

b.sum(5,3,9);

b.sum(5);

}

www.sisoft.in 6

Output:

7

17

5

By having different data types of arguments

Class A

{

Public:

int sum(int x, int y)

{

cout<<x + y<<endl;

}

double sum(double x)

{

cout<<x<<endl;

}

}

float sum(float x, float y)

{

cout<<x + y<<endl;

}

};

void main()

 {

A b;

b.sum(3,4);

b.sum(5.9);

b.sum(5.34F, 3.45F);

}

www.sisoft.in 7

Output:

7

5.9

8.79

Function with Default Arguments

www.sisoft.in 8

 When we declared a function with default parameters then it is said to be
Function with default arguments .

 C++ allows us to call a function without specifying all its arguments.

 In such cases, the function assigns a default value to the parameter which does
not have a matching argument in the function call.

 Rules :

 Only the last argument must be given default value. You cannot have a
default argument followed by non default argument.

 1) sum(int x, int y); // valid

 2) sum(int x, int y = 0); // valid

 3) sum(int x = 0, int y); // not valid

 4) sum(int x, int y=0, int z); // not valid

9 www.sisoft.in

class A
{
public:
int sum(int x, int y=9)
{
cout<<x + y<<endl;
}
void main()
 {
A b;
b.sum(3,4);
b.sum(5);
}

 www.sisoft.in 10

Output:

7

14

Operator Overloading in C++

www.sisoft.in 11

 The meaning of operators are already defined and fixed for basic
types like: int, float, double etc in C++ language. For example: If you
want to add two integers then, + operator is used. But, for user-
defined types(like: objects), you can define the meaning of operator,
i.e, you can redefine the way that operator works. For example: If
there are two objects of a class that contain string as its data member,
you can use + operator to concatenate two strings. Suppose, instead
of strings if that class contains integer data member, then you can use
+ operator to add integers.

 This feature in C++ programming that allows programmer to
redefine the meaning of operator when they operate on class
objects is known as operator overloading.

12 www.sisoft.in

Overloaded Operators:

-

* / % ^

& | ~ ! , =

< > <= >= ++ --

<< >> == != && ||

+= -= /= %= ^= &=

|= *= <<= >>= [] ()

-> ->* new new [] delete delete []

www.sisoft.in 13

 These operator can’t be overloaded:

 1) Class members access operators(. , *)

 2) Scope Resolution Operator (::)

 3) Size Operator (sizeof)

 4) Conditional Operator (?:):

 The reason behind this that these operators takes names (class name)
as their operand instead of values, as in the case with other normal
operators.

14 www.sisoft.in

Defining Operator Overloading :

• To define an additional task to an operator, we must specifywhat it
means in relation to th class to which the operator is applied. This is
done with the help of a special function, called operator function,
which described the task.

• Syntax:

• Return_type class_name :: operator op(parameter)

• {

• ……

• …… // Function Body

• }

• Here op is the operator being overloaded & operator is a keyword.

www.sisoft.in 15

 Operator functions must be either member functions(non static) or
friend function.

 A basic difference between them is that a friend function will have
only one argument for unary operator & two for binary operator.

 While a member function has no argument for unary & one argument
for binary operator.

 This is because the object used to invoke the member function is
passed implicitly and therefore is available for member function.

 This is not the case with friend function. Arguments may be passed
either by value or by reference.

16 www.sisoft.in

Overloaded Unary Operator
 The unary operators operate on a single operand.

 They operate on the object for which they were called and
normally, this operator appears on the left side of the object, as in
!obj, -obj, and ++obj but sometime they can be used as postfix as
well like obj++ or obj--.

 Following are the examples of Unary operators:

 1) The unary minus (-) operator.

 2) The logical not (!) operator.

 3) The increment (++) and decrement (--) operators.

www.sisoft.in 17

Unary minus operator:
class A

{

 int a,b,c;

public:

void getdata (int x, int y, int z)

{

 a=x; b=y; c=z;

}

void display()

{

 cout<<"a:" <<"\t"<<a<<endl;

 cout<<"b:" <<"\t"<<b<<endl;

 cout<<"c:" <<"\t"<<c<<endl;

}

void operator - () // Operator - () takes no argument. It changes the
sign of data member of the object S. Sine this function is a member
function of the same class. It can directly access the member of the
object which activated it.

{

 a=-a; b=-b; c=-c;

}

};

int main()

{

 A m;

 m.getdata(10,20,30);

 m.display();

 -m ; // Activates operator – function

 m.display();

}

 www.sisoft.in 18

Output:

10, 20, 30

-10 -20 -30

Overloaded binary Operator
 The binary operators take two arguments.

 Following are the examples of Unary operators:

 1) Addition (+) operator

 2) Subtraction (-) operator

 3) Division (/) operator.

www.sisoft.in 19

Binary (+) operator:
class A

{

 int a, b;

public:

 void getdata(int x, int y)

 {

 a = x;

 b = y;

 }

 void display()

 {

 cout<<a<<"+"<<b<<"i"<<endl;

 }

 A operator+ (A ob)

 {

 A t;

 t.a= a+ob.a;

 t.b= b+ob.b;

 return t;

 }

A operator- (A ob)

 {

 A t;

 t.a= a-ob.a;

 t.b= b-ob.b;

 return t;

 }

};

int main()

{

 A obj1,obj2,result,result1;

 obj1.getdata(50,30);

 obj2.getdata(10,20);

 result=obj1+obj2;

cout<<"Input values are\n";

 obj1.display();

 cout<<"Result are:\n";

 result. display();

}

www.sisoft.in 20

Output:

Input values are:

50 + 30i

10 + 20i

Result are:

60 + 50i

40 + 10i

Overloaded binary Operator using Friend Function:

 As already discussed, friend functions may be used in the place of
member functions for overloading a binary operator, the only
difference between that a friend function requires two arguments
to be explicitly passed to it, while a member function requires only
one.

Syntax:

 friend Num operator +(Num a, Num b); // Declaration

Num operator +(Num a, Num b)

{

return Num ((a . x + b . x), (a . y + b . y)); // Definition

}

www.sisoft.in 21

Binary (+) operator using friend function:
class s

{

public:

int i,j;

s()

{

 i=j=0;

}

void disp()

{

 cout << i <<" " << j;

}

void getdata()

{

 cout<<"Enter the values of i & j\n";

 cin>>i>>j;

}

friend s operator+(int,s);

};

s operator+(int a, s s1)

{

 s k;

 k.i = a+s1.i;

 k.j = a+s1.j;

 return k;

}

int main()

{

s s2;

s2.getdata();

s s3 = 10+s2;

s3.disp();

}
www.sisoft.in 22

Output:

Enter the values of i & j :

4 5

14 15

Rules for Overloading Operators

www.sisoft.in 23

 In C++, following are the general rules for operator overloading.

1) Only built-in operators can be overloaded. New operators can not be
created.

2) Precedence and associativity of the operators cannot be changed.

3) Overloaded operators cannot have default arguments except the function
call operator () which can have default arguments.

4) Operators cannot be overloaded for built in types only. At least one
operand must be used defined type.

5) Assignment (=), subscript (*+), function call (“()”), and member selection (->)
operators must be defined as member functions.

6) Except the operators specified in point 6, all other operators can be either
member functions or a non member functions.

7) Some operators like (assignment)=, (address)& and comma (,) are by
default overloaded

24 www.sisoft.in

